-‘๑’- Chuyên Toán Bến Tre 09-12 -‘๑’-
Chúc mừng bạn đã đăng nhập thành công. Xin chờ giây lát để trở về trang chủ forum.
-‘๑’- Chuyên Toán Bến Tre 09-12 -‘๑’-
Chúc mừng bạn đã đăng nhập thành công. Xin chờ giây lát để trở về trang chủ forum.
-‘๑’- Chuyên Toán Bến Tre 09-12 -‘๑’-
Bạn có muốn phản ứng với tin nhắn này? Vui lòng đăng ký diễn đàn trong một vài cú nhấp chuột hoặc đăng nhập để tiếp tục.



 
Trang ChínhTrang Chính  Đăng kýĐăng ký  Tìm kiếmTìm kiếm  Đăng NhậpĐăng Nhập  
Lưu ý: Gõ Tiếng Việt có dấu, viết đúng chính tả
 Bá Khả (3384)
 >>>lonely<<< (1710)
 quythanhkhuu (1304)
 kendy_girl202 (1043)
 truc_quynh_1994 (885)
 peheophuthuy (767)
 [A]chijioltiz[o] (711)
 Svat_94 (536)
 [P]....[lẶng]im..... (495)
 Su_147617 (426)

Share | 

 

 Poincaré, Perelman, Khưu Thành Đồng và.....

Xem chủ đề cũ hơn Xem chủ đề mới hơn Go down 
Poincaré, Perelman, Khưu Thành Đồng và.....  EmptyTue Jun 28, 2011 5:20 pm

quythanhkhuu
Where there is a will, there is a way
quythanhkhuu

Pythagore
Pythagore

Giới tính : Nam
Cung : Hổ Cáp
Tổng số bài gửi Tổng số bài gửi : 1304
Tài khoản Tài khoản : 2071
Được cảm ơn : 9
Sinh nhật Sinh nhật : 03/01/1994
Tuổi Tuổi : 27
Đến từ Đến từ : Ap 2 Huu Dinh_ Chau Thanh_Ben Tre
Châm ngôn Châm ngôn : Where there is a will, there is a way
Level: 27 Kinh nghiệm: 1304%
Sinh mệnh: 1304/100
Pháp lực: 27/100

Bài gửiTiêu đề: Poincaré, Perelman, Khưu Thành Đồng và.....

 
Tháng 8 vừa qua, nhân Đại hội Thế giới họp tại Madrid, Liên hiệp Quốc tế các nhà Toán học (IMU) đã trao tặng huy chương Fields (về toán học, tương đương với giải Nobel), như thường lệ bốn năm một lần (1). Bốn người được giải : hai chuyên gia về tính xác suất Werner (Pháp) và Okoundov (Nga) – công trình của họ cũng liên quan tới những ngành khác – một nhà giải tích học và lí thuyết số người Úc gốc Hoa Terence Yao (Đào Triết Hiên), và một người Nga nữa, nhà tô pô hình học Grigori Perelman (viện Steklov, St-Petersburg). Phải nói là tiếng tăm của Perelman trên các media quốc tế đã vượt xa ba đồng nghiệp. Tên tuổi của ông đã ra khỏi lãnh vực khoa học thuần tuý, hiển hiện trên trang nhất của những nhật báo lớn. Đây là lần đầu tiên toán học trở thành đề tài sôi nổi của báo chí kể từ sự tích « anh hùng » của Andrew Wiles (chứng minh được định lí « lớn » của Fermat), cuối thế kỉ XX. Cũng phải nói là trong « vụ Perelman » này, có đầy đủ những tố chất « glamour » chẳng mấy khi tìm thấy nơi các nhà toán học và bộ môn khắc khổ của họ : đầu tiên là sự « hóc búa » phi thường của ức đoán Poincaré (bằng chứng là Viện Clay đã xếp nó trong « 7 bài toán của thiên niên kỉ », và treo thưởng 1 triệu đô la cho ai giải được một trong 7 bài ấy) ; sau đó là cá tính phi phàm của chính Perelman, sau khi chứng minh xong đã từ chối, không nhận huy chương Fields, và chắc cũng sẽ từ chối cả giải thưởng 1 triệu đô la ; thêm vào đó là cuộc tranh cãi hơi bị nhầu về « ai trước ai », « ai hơn ai » đang tác động tới sự « thanh cao » của toán học....

PERELMAN và POINCARE

Với ngoại hình như Rasputin, móng tay dài như đồ nho, phong độ như ẩn sĩ, Grigory (Grisha, đối với người thân – nhưng biết ai là « thân » ?) đúng là bức chân dung biếm hoạ của nhà bác học lập dị trong quan niệm của đại chúng. Nhưng ngay cả những người dị ứng với tác phong của Perelman cũng phải thừa nhận khía cạnh « trước sau như một » của ông : năm 1990, Perelman đã từ chối huy chương Nhà toán học trẻ của Châu Âu, bây giờ từ chối huy chương Fields (mặc dầu chủ tịch MIU đã đích thân bay sang St.Petersburg tìm cách thuyết phục), mai kia chắc sẽ từ chối giải Clay. Một người đàn ông bốn mươi tuổi vẫn còn ở với mẹ, sống với 100 đô một tháng, mà từ chối 1 triệu đô la, thì không thể chỉ là làm điệu. Trong lịch sử khoa học, hành xử như Perelman hầu như không có tiền lệ. Mặc dầu trong giới toán học, không thiếu những nhân vật kì dị, chẳng hạn như nhà hình học đại số Alexandre Grothendieck, đang ở đỉnh cao vinh quang, đã từ bỏ tất cả để đi chăn dê, nghe nói trên núi Pyrénées. Nhưng ngay cả Grothendieck, tuy không chịu sang Moskva năm 1966 để nhận huy chương Fields vì bất đồng chính trị, cũng không từ chối giải thưởng này. Trong một lãnh vực khác, trường hợp duy nhất còn ở trong kí ức là trường hợp Jean-Paul Sartre từ chối giải Nobel văn học. Dù sao chăng nữa, cá tính của Perelman có thể không được nhất trí tán thưởng, song Perelman với tư cách nhà toán học thì không ai có thể phủ nhận : năm 1982, ở tuổi 16, đã được giải nhất trong cuộc thi Olympiad toán học với số điểm tuyệt đối (42/42) ; đỗ tiến sĩ vào cuối thập niên 1980, là người duy nhất trong cùng khoá, được tuyển mộ làm nghiên cứu viên ở Viện Steklov (tương đương với Viện quốc gia nghiên cứu khoa học CNRS của Pháp) ; trong những năm 1990, làm nghiên cứu « sau tiến sĩ » ở New York, được mấy trường, viện mời làm việc thường trực ở Hoa Kì, nhưng đều khước từ và trở về St. Petersburg. Từ đó, hầu như mất tăm mất tích, cho đến 2002-2003, Perelman đưa lên mạng internet ba bài viết ngắn. Chính ba bài viết trứ danh ấy, bốn năm sau, đã được tưởng thưởng vì « những đóng góp vào hình học, mang lại những hiểu biết cách mạng về cấu trúc hình học và giải tích của dòng chảy Ricci ».

Câu văn « bí hiểm » đó của Uỷ ban xét duyệt giải Fields (chúng tôi sẽ trở lại ở dưới) không hề đá động tới nhân vật « đầu tiên » của câu chuyện : Henri Poincaré (1854-1912) – đừng nhầm với anh em họ là Raymond Poincaré, thủ tướng – mà nhân thân hoàn toàn trái nghịch với G. Perelman. Đỉnh cao của khoa học đương đại, nhà toán học kiêm vật lí học, triết lí khoa học, được rất nhiều giải thưởng quốc tế, thành viên hay chủ tịch không biết bao nhiêu hiệp hội bác học, thành viên Viện hàn lâm khoa học Pháp, Henri Poincaré là hình ảnh tiêu biểu tốt đẹp nhất về sự thành đạt trí tuệ và xã hội mà giai cấp tư sản thế kỉ XIX có thể sản sinh. Ông cũng là nhà bác học « xuyên ngành » cuối cùng : là nhà triết học về phương pháp luận, ông là tác giả những công trình kinh điển về nền tảng phương pháp khoa học, về cơ cấu não trạng của quá trình khám phá ; là nhà vật lí, ông đã 12 lần được đề nghị giải Nobel, và ngày nay được coi là đồng tác giả của thuyết tương đối « thu hẹp » (2) ; với tư cách nhà toán học, bên cạnh David Hilbert, ông được coi là nhà toán học vĩ đại nhất, đồng thời là « bậc thầy phổ quát cuối cùng », bao trùm đại số học lẫn hình học, lí thuyết số và hình học. Chính ông, trong một công trình năm 1895, đã sáng lập ra một ngành mới của hình học mà ông đặt tên là « analysis situs », ngày nay gọi là tôpô học (topo, tiếng Hi Lạp, có nghĩa : nơi, không gian). Trong một trong những tác phẩm cuối cùng (viết năm 1904), ông đã « nhân tiện » nêu câu hỏi (câu hỏi này sẽ được gọi là « ức đoán của Poincaré ») mà không đào sâu thêm vì « sợ nó dẫn chúng ta đi quá xa ». Nói theo ngôn ngữ toán học hiện đại dưới dạng tổng quát nhất, ức đoán Poincaré có thể phát biểu như sau : « Mọi đa tạp tô pô (không biên) n chiều, compac, liên thông đơn thuần, đều đồng phôi với mặt cầu n chiều ». Có thể nói, đối với các nhà tô pô học, mệnh đề ấy đã trở thành một thứ « Chén thiêng » (3), mục tiêu của không biết bao cuộc tìm kiếm, giống như định lí « lớn » của Fermat đối với các nhà số học trong suốt ba trăm năm trời. Không thể nào liệt kê được tên tuổi của tất cả các nhà toán học, trong đó có những tay cự phách, đã mắc « hội chứng Poincaré ». Giáo sư John Morgan, chủ nhiệm khoa Toán trường Đại học Columbia, thú nhận thoải mái : « Cuộc đời toán học của tôi đã bị ức đoán Poincaré chế ngự. Tôi tưởng sẽ không bao giờ được thấy nó được chứng minh. Tôi tưởng sẽ chẳng có ai tiếp cận được chứng minh ».

ỨC ĐOÁN POINCARE

Trước khi đi xa hơn, không thể không giải thích đôi chút để độc giả « ngoại đạo » có một ý niệm về nội dung mệnh đề « ức đoán » quá bí hiểm nói trên. Như chúng tôi đã có dịp đề cập trên cột báo này (4), viết bài « phổ biến » về toán học là một việc làm nguy hiểm, bởi vì ngôn ngữ toán học hết sức chuẩn xác, chệch đi một chút có thể làm lệch ý nghĩa, thậm chí đảo ngược ý nghĩa, và điều này thường hay xảy ra khi người trình bày dùng những hình ảnh trực quan và ngôn ngữ thường ngày. Ý thức rõ điều đó, chúng ta hãy thử xem xét từng từ ngữ của ức đoán Poincaré :
Nguồn: MathScope.ORG


 

Poincaré, Perelman, Khưu Thành Đồng và.....

Xem chủ đề cũ hơn Xem chủ đề mới hơn Về Đầu Trang 
Trang 1 trong tổng số 1 trang

Permissions in this forum:Bạn không có quyền trả lời bài viết
-‘๑’- Chuyên Toán Bến Tre 09-12 -‘๑’- :: -‘๑’-Những Nẻo Đường Tri Thức-‘๑’- :: -‘๑’-Toán-‘๑’--
Có Bài Mới Có bài mới đăngChưa Có Bài Mới Chưa có bài mới
Fixed and up by [A]dmin .
Copyright © 2007 - 2010, cHuYeNtOaN0912.fOrUm-vIeT.nEt .
Powered by phpBB2 - GNU General Public License. Host in France. Support by Forumotion.
Xem tốt nhất ở độ phần giải lớn hơn 1280x1024 và trình duyệt Firefox
Get Firefox Now Get Windows Media Player Now
Create a forum on Forumotion | © phpBB | Free forum support | Liên hệ | Báo cáo lạm dụng | Thảo luận mới nhất