-‘๑’- Chuyên Toán Bến Tre 09-12 -‘๑’-
Chúc mừng bạn đã đăng nhập thành công. Xin chờ giây lát để trở về trang chủ forum.
-‘๑’- Chuyên Toán Bến Tre 09-12 -‘๑’-
Chúc mừng bạn đã đăng nhập thành công. Xin chờ giây lát để trở về trang chủ forum.
-‘๑’- Chuyên Toán Bến Tre 09-12 -‘๑’-
Bạn có muốn phản ứng với tin nhắn này? Vui lòng đăng ký diễn đàn trong một vài cú nhấp chuột hoặc đăng nhập để tiếp tục.



 
Trang ChínhTrang Chính  Đăng kýĐăng ký  Tìm kiếmTìm kiếm  Đăng NhậpĐăng Nhập  
Lưu ý: Gõ Tiếng Việt có dấu, viết đúng chính tả
 Bá Khả (3384)
 >>>lonely<<< (1710)
 quythanhkhuu (1304)
 kendy_girl202 (1043)
 truc_quynh_1994 (885)
 peheophuthuy (767)
 [A]chijioltiz[o] (711)
 Svat_94 (536)
 [P]....[lẶng]im..... (495)
 Su_147617 (426)

Share | 

 

 [BĐT] Topic về bất đẳng thức Schur

Xem chủ đề cũ hơn Xem chủ đề mới hơn Go down 
[BĐT] Topic về bất đẳng thức Schur EmptyMon Nov 08, 2010 6:24 pm

Bá Khả
Tôi đã được học rằng, biết cách tha thứ cho người khác thôi chưa đủ, phải biết cách tha thứ cho bản thân mình.
Bá Khả

Cauchy
Cauchy

https://chuyentoan0912.forumvi.com
Giới tính : Nam
Cung : Thiên Bình
Tổng số bài gửi Tổng số bài gửi : 3384
Tài khoản Tài khoản : 5289
Được cảm ơn : 43
Sinh nhật Sinh nhật : 30/09/1994
Tuổi Tuổi : 27
Đến từ Đến từ : Cái chỗ đó đó...
Châm ngôn Châm ngôn : Tôi đã được học rằng, biết cách tha thứ cho người khác thôi chưa đủ, phải biết cách tha thứ cho bản thân mình.
Level: 27 Kinh nghiệm: 3384%
Sinh mệnh: 3384/100
Pháp lực: 27/100

Bài gửiTiêu đề: [BĐT] Topic về bất đẳng thức Schur

 
BẤT ĐẲNG THỨC SCHUR
Với các số thực không âm a,b,c ; ta luôn có:

trong đó k là một số thực bất kì.
Chứng minh.
Không mất tính tổng quát, giả sử
Với k=1:
Ta có:
và
Vậy BĐT được chứng minh với k=1 là đúng. Đẳng thức xảy ra khi a=b=c hay a=b, c=0 và các hoán vị.
Đối với các trường hợp k khác 1 thì chứng minh tương tự, ở đây mình ko ch/m vì tốn time gõ lè lưỡi
(thực ra là gõ thiếu k, nên chứng minh k=1, ngại gõ lại [BĐT] Topic về bất đẳng thức Schur 832535)

----------------------------------------------------------------------------------------------------------

Bài 1. (Cơ bản)
Với a,b,c>0, chứng minh các BĐT:
a)
b)
c)
d)



RUBIK

3x3x3
4x4x4
5x5x5
Pyramix
Twist
Fastest:39.84s
Average: 54.58s
OH: 2min45s
Fastest:2min56sFastest: 9min8sFastest: 12.12sFastest: 8.33s


Được sửa bởi Shuno.Fire ngày Wed Nov 10, 2010 7:12 pm; sửa lần 1.

[BĐT] Topic về bất đẳng thức Schur EmptyWed Nov 10, 2010 7:12 pm

Bá Khả
Tôi đã được học rằng, biết cách tha thứ cho người khác thôi chưa đủ, phải biết cách tha thứ cho bản thân mình.
Bá Khả

Cauchy
Cauchy

https://chuyentoan0912.forumvi.com
Giới tính : Nam
Cung : Thiên Bình
Tổng số bài gửi Tổng số bài gửi : 3384
Tài khoản Tài khoản : 5289
Được cảm ơn : 43
Sinh nhật Sinh nhật : 30/09/1994
Tuổi Tuổi : 27
Đến từ Đến từ : Cái chỗ đó đó...
Châm ngôn Châm ngôn : Tôi đã được học rằng, biết cách tha thứ cho người khác thôi chưa đủ, phải biết cách tha thứ cho bản thân mình.
Level: 27 Kinh nghiệm: 3384%
Sinh mệnh: 3384/100
Pháp lực: 27/100

Bài gửiTiêu đề: Re: [BĐT] Topic về bất đẳng thức Schur

 
Shuno.Fire đã viết:

Bài 1. (Cơ bản)
Với a,b,c>0, chứng minh các BĐT:
a)
b)
c)
d)
Bài 1 thực ra chỉ là BĐT Schur với k=1. Khai triển ra, biến đổi khéo tí là ra 4 cái như trên vui vẻ
---------------------------------------------------------------------------------------------------------------------------------------------------------
Bài 2.
Chứng minh với mọi a,b,c thực, ta luôn có:




RUBIK

3x3x3
4x4x4
5x5x5
Pyramix
Twist
Fastest:39.84s
Average: 54.58s
OH: 2min45s
Fastest:2min56sFastest: 9min8sFastest: 12.12sFastest: 8.33s

[BĐT] Topic về bất đẳng thức Schur EmptyWed Nov 10, 2010 7:58 pm

truc_quynh_1994
Dù cho điều gì xảy ra chăng nữa, cả những khi sầu muồn nhất , ta vẫn cảm nhận rằng thà yêu và thất tình còn hơn chẳng bao giờ biết nghĩa yêu đương.
truc_quynh_1994

Giáo Sư
Giáo Sư

Giới tính : Nữ
Cung : Bạch Dương
Tổng số bài gửi Tổng số bài gửi : 885
Tài khoản Tài khoản : 1306
Được cảm ơn : 20
Sinh nhật Sinh nhật : 06/04/1994
Tuổi Tuổi : 28
Đến từ Đến từ : Châu Thành - Bến Tre
Châm ngôn Châm ngôn : Dù cho điều gì xảy ra chăng nữa, cả những khi sầu muồn nhất , ta vẫn cảm nhận rằng thà yêu và thất tình còn hơn chẳng bao giờ biết nghĩa yêu đương.
Level: 28 Kinh nghiệm: 885%
Sinh mệnh: 885/100
Pháp lực: 28/100

Bài gửiTiêu đề: Re: [BĐT] Topic về bất đẳng thức Schur

 
Mấy cái này cứ như là bạn khỉ tự sướng ac ac ac=)) cười lăn lộn cười lăn lộn



Người đi một nửa hồn tôi mất,
Một nửa hồn tôi bỗng dại khờ.
Sao bông phượng nở trong màu huyết,
Nhỏ xuống lòng tôi những giọt châu?

* * *
Nước vô tình ngàn năm trôi mãi
Trăng vô tình, trăng ở mãi tít xa
Mây vô tình, mây đùa trước gió
Người vô tình, người có hiểu lòng ta!


[BĐT] Topic về bất đẳng thức Schur EmptyWed Nov 10, 2010 8:01 pm

Bá Khả
Tôi đã được học rằng, biết cách tha thứ cho người khác thôi chưa đủ, phải biết cách tha thứ cho bản thân mình.
Bá Khả

Cauchy
Cauchy

https://chuyentoan0912.forumvi.com
Giới tính : Nam
Cung : Thiên Bình
Tổng số bài gửi Tổng số bài gửi : 3384
Tài khoản Tài khoản : 5289
Được cảm ơn : 43
Sinh nhật Sinh nhật : 30/09/1994
Tuổi Tuổi : 27
Đến từ Đến từ : Cái chỗ đó đó...
Châm ngôn Châm ngôn : Tôi đã được học rằng, biết cách tha thứ cho người khác thôi chưa đủ, phải biết cách tha thứ cho bản thân mình.
Level: 27 Kinh nghiệm: 3384%
Sinh mệnh: 3384/100
Pháp lực: 27/100

Bài gửiTiêu đề: Re: [BĐT] Topic về bất đẳng thức Schur

 
Chứ có ai wan tâm đâu buồn chẳng lẽ để topic bỏ ko thấy nó kì lắm vui vẻ Tui có wen 1 nhóc ở BThuận, nó vào forum thấy mấy cái topic BĐT bỏ ko nó cười wá trời cười nhăn răng



RUBIK

3x3x3
4x4x4
5x5x5
Pyramix
Twist
Fastest:39.84s
Average: 54.58s
OH: 2min45s
Fastest:2min56sFastest: 9min8sFastest: 12.12sFastest: 8.33s

[BĐT] Topic về bất đẳng thức Schur EmptyThu Nov 11, 2010 2:38 pm

quythanhkhuu
Where there is a will, there is a way
quythanhkhuu

Pythagore
Pythagore

Giới tính : Nam
Cung : Hổ Cáp
Tổng số bài gửi Tổng số bài gửi : 1304
Tài khoản Tài khoản : 2071
Được cảm ơn : 9
Sinh nhật Sinh nhật : 03/01/1994
Tuổi Tuổi : 28
Đến từ Đến từ : Ap 2 Huu Dinh_ Chau Thanh_Ben Tre
Châm ngôn Châm ngôn : Where there is a will, there is a way
Level: 28 Kinh nghiệm: 1304%
Sinh mệnh: 1304/100
Pháp lực: 28/100

Bài gửiTiêu đề: Re: [BĐT] Topic về bất đẳng thức Schur

 
Bài d/ làm bình thường cũng ra mà. không cần dùng Schur


[BĐT] Topic về bất đẳng thức Schur EmptyThu Nov 11, 2010 4:20 pm

Bá Khả
Tôi đã được học rằng, biết cách tha thứ cho người khác thôi chưa đủ, phải biết cách tha thứ cho bản thân mình.
Bá Khả

Cauchy
Cauchy

https://chuyentoan0912.forumvi.com
Giới tính : Nam
Cung : Thiên Bình
Tổng số bài gửi Tổng số bài gửi : 3384
Tài khoản Tài khoản : 5289
Được cảm ơn : 43
Sinh nhật Sinh nhật : 30/09/1994
Tuổi Tuổi : 27
Đến từ Đến từ : Cái chỗ đó đó...
Châm ngôn Châm ngôn : Tôi đã được học rằng, biết cách tha thứ cho người khác thôi chưa đủ, phải biết cách tha thứ cho bản thân mình.
Level: 27 Kinh nghiệm: 3384%
Sinh mệnh: 3384/100
Pháp lực: 27/100

Bài gửiTiêu đề: Re: [BĐT] Topic về bất đẳng thức Schur

 
Nhưng cũng nhờ đó mà mình bik ở đâu ra bài d vui vẻ Nó là Schur cười nhăn răng



RUBIK

3x3x3
4x4x4
5x5x5
Pyramix
Twist
Fastest:39.84s
Average: 54.58s
OH: 2min45s
Fastest:2min56sFastest: 9min8sFastest: 12.12sFastest: 8.33s

[BĐT] Topic về bất đẳng thức Schur Empty

Sponsored content



Level: Kinh nghiệm: %
Sinh mệnh: /100
Pháp lực: /100

Bài gửiTiêu đề: Re: [BĐT] Topic về bất đẳng thức Schur

 

 

[BĐT] Topic về bất đẳng thức Schur

Xem chủ đề cũ hơn Xem chủ đề mới hơn Về Đầu Trang 
Trang 1 trong tổng số 1 trang

Permissions in this forum:Bạn không có quyền trả lời bài viết
-‘๑’- Chuyên Toán Bến Tre 09-12 -‘๑’- :: -‘๑’-Những Nẻo Đường Tri Thức-‘๑’- :: -‘๑’-Toán-‘๑’- :: Bất Đẳng Thức-
Có Bài Mới Có bài mới đăngChưa Có Bài Mới Chưa có bài mới
Fixed and up by [A]dmin .
Copyright © 2007 - 2010, cHuYeNtOaN0912.fOrUm-vIeT.nEt .
Powered by phpBB2 - GNU General Public License. Host in France. Support by Forumotion.
Xem tốt nhất ở độ phần giải lớn hơn 1280x1024 và trình duyệt Firefox
Get Firefox Now Get Windows Media Player Now
Free forum | © phpBB | Free forum support | Báo cáo lạm dụng | Thảo luận mới nhất